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Abstract 
When the coherent superimposition of two (nearly) 
plane waves is used as the initial photon state of an 
inelastic X-ray scattering experiment on solids 
(coherent Compton scattering), information can be 
obtained about the projection of nondiagonal ele- 
ments of the one-particle density matrix in momen- 
tum space on the scattering vector q, provided the 
requirements of the impulse approximation are 
fulfilled. The double differential scattering cross sec- 
tion for this new scattering phenomenon is derived 
and then subjected to impulse approximation. It 
is further demonstrated that the standing wave pat- 
tern, which on passing the Bragg reflection range is 
sweeping the atomic sites, yields an appropriate 
approach to the desired initial photon state for 
coherent Compton scattering. Experimental coherent 
Compton spectra from 111 and 220 Bragg reflections 
are used to extract the corresponding projections of 
nondiagonal elements of the density matrix. Possible 
experimental improvements are discussed. 

I. Introduction 
The quantum-mechanical expectation value of a spin- 
independent single-particle quantity, as measured in 
a many-particle system, is generally determined by 
the complete spin-free one-particle density matrix, 
this means by both its diagonal and its nondiagonal 
elements (L6wdin, 1956). Moreover, within the limits 
of the Hartree-Fock approximation, the knowledge 
of the complete spin-free one-particle density matrix 
is sufficient for calculating expectation values of 
every spin-independent many-particle quantity, as 
measured in a many-particle system. 

The diagonal elements of the position-space density 
matrix can be determined by means of X-ray diffrac- 
tion measurements, provided the phase problem can 
be solved. The diagonal elements of the momentum- 
space density can be obtained by measuring direc- 
tional Compton profiles and by applying appro- 
priate momentum-space reconstruction methods 
(Mijnarends, 1977). It is well known (Benesch, Singh 
& Smith, 1971) that the measurement of diagonal 
elements of the density matrix in one space provides 
information about the space average of nondiagonal 
elements of the density matrix of the complementary 
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space. So far, however, no experimental method is 
known that yields detailed information about non- 
diagonal elements of the spin-free one-particle 
density matrix in any space exceeding that that can 
be provided by measuring diagonal elements in two 
complementary spaces. 

Most recently, it has been shown that, in principle, 
this type of detailed information can be obtained in 
momentum space by means of a special inelastic 
X-ray scattering experiment, where the coherent 
superimposition of two plane waves K0 and Ko+ 
gh(gh  = reciprocal-lattice vector) is the initial photon 
state (coherent inelastic scattering) (Schiilke, 1981; 
Golovchenko et al., 1981; Schiilke, Bonse & Mourikis, 
1981; Schiilke, 1982). 

It will eludicate the physical significance of getting 
detailed information about nondiagonal density if 
one assumes that the ground state of the scattering 
system is represented by X(P), a single-particle wave 
function in momentum space. In this case, conven- 
tional inelastic X-ray scattering, where only one plane 
wave represents the initial photon state, supplies 
information about X(P)X*(P), the momentum density. 
In this way one does not learn anything about the 
phase of X(P)- Coherent inelastic scattering, however, 
yields information about X*(p+gh)X(p), the non- 
diagonal momentum density. By this means the rela- 
tive phase of X(P) can be measured. This can be seen 
in analogy to the phase problem of X-ray diffraction: 
When the incident wave satisfies the Bragg condition 
only for one set of planes, characterized by gh, one 
gets information only about I F l, the magnitude of 
the structure factor. By applying the coherent interac- 
tion among diffracted beams, which occur when two 
or more sets of planes diffract simultaneously, one 
can determine, in principle, the relative phases of the 
corresponding structure factors [see, for instance, the 
successful application of this method by Chang & 
Han (1982)]. It is the aim of this paper to derive first 
(§ II) the basic equations for the double differential 
cross section of inelastic scattering of photons from 
coherent wave fields in greater detail than in a pre- 
vious publication (Schiilke, 1981). In a second step 
(§ III) the application of the impulse approximation 
to these basic equations will lead to a relationship 
between the double differential inelastic scattering 
cross section and the nondiagonal elements of the 
one-particle density matrix in momentum space. In 
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§ IV an experimental set up is proposed and discussed 
in detail, which makes possible inelastic scattering of 
photons from wave fields. In addition to a previous 
publication (Schiilke, Bonse & Mourikis, 1981), the 
influences of detector resolution, beam divergences 
and polarization mixing on the final result are calcu- 
lated in detail, and a method is proposed to prove 
the consistency of coherent Compton scattering 
results with conventional X-ray diffraction measure- 
ments. In § V, for the first time, experimental coherent 
inelastic scattering results in Si are used to derive 
information about nondiagonal matrix elements of 
the one-particle density matrix in momentum space, 
or, as far as the independent-particle model is 
concerned, information about the relative phases of 
momentum-space wave functions. Further improve- 
ments of experimental technique are discussed. 

II. Double differential scattering cross section of 
coherent inelastic scattering 

In conventional inelastic X-ray scattering experi- 
ments the initial photon state is simply a (nearly) 
plane wave. As will be shown in § IV, it is possible 
to realize experimentally the coherent superimposi- 
tion of the two plane waves with wave vectors Ko and 
Kh = Ko + gh to be the initial photon state of an inelas- 
tic X-ray scattering experiment (coherent inelastic 
scattering). This can be done by setting a nearly 
perfect crystal into the Bragg position, where the 
dynamical theory of X-ray diffraction (Laue, 1960) 
predicts (within the limits of the two-beam approxi- 
mation) a wave-field pattern, whose vector potential 
expectation value at the j th electron of the electron 
system under consideration can be written as follows: 

(Aj)= (hc/2tOo)'/E[Aoeo cos (Ko. rj) 

+ mhe h COS ( K h r  j --  Atlb)]  (2.1) 

where e0 and eh are the unit vectors of polarization 
of the Ko- and Kh-wave components, respectively. 

Let the vector potential of the inelastically scattered 
wave be represented as in the conventional case by 

(A~)=(hc/2to')l/2A' e' cos (K'. rj). (2.2) 

It is easy to show that (Aj) of (2.1) can be considered 
as the expectation value <a ,lAjla ,> of the vector 
potential operator 

Aj =- ( 7rflc2/ O~o)'/2{eo[ a~ exp (iKo. rj) 

+ aoexp (--iKo.rj)]+eh[a-~ exp (iKh. rj) 

+ah exp (--iKh. rj)]} (2.3) 

in the initial photon state 

*3 = X Ino)(A2n°e-a~/n0[) 1/2 
n o  

X • [nh)(A2"he--A2h/nh!) 
nh 

x exp [--i(nh + 1/2) A~]ln'), (2.4) 

where Ino), Inh) and I n') are energy eigenstates with 
no, n h and n' photons in the mode, respectively, a ÷ 
and a are creation and annihilation operators acting 
on photon fields. The total initial state of the system 
(photon field and scattering electron system) can be 
represented by 

1I) = 1i)1~,) (2.5) 

where [i) is the initial state of the electron system. 
In order to calculate the transition probability P 

in a coherent inelastic X-ray scattering experiment 
within the limits of first-order perturbation theory 
(Heitler, 1949), the final state IF) of the system 
has to be an energy eigenstate of the unperturbed 
Hamiltonian so that it can be written as 

IF) = [f)[no)lnh)ln' + 1) (2.6) 

with an additional photon in the A' field. If) is the 
final state of the electron system. Within the limits of 
first-order perturbation theory, only that part of the 
interaction Hamiltonian 

Hint=E ( e /mc)A j .p j+E (e2/2mc2)A] (2.7) 
J J 

that is quadratic in the vector potential operator Aj 
contributes to the corresponding transition proba- 
bility. 

By expanding the initial state [I) into eigenstates 

It>--II)lmo)lmh)lm') (2.8) 
of the unperturbed Hamiltonian, the transition proba- 
bility P reads as follows: 

P =  I E (f[nint L)(L]I) 
i 

I l, mo,mh,  m '  

x {-2i  exp [ i(Ep - EL)( t /2h )] 

x s i n [ ( E F - E L ) ( t / 2 h ) ] / ( E F - E r . ) }  (2.9) 

with 
Hint=Y. (e2/2mc2)(Aj +A~) 2, (2.10) 

J 

where Aj is given by (2.3) and 

Aj=(whc2/tOo)l/Z{e'[a '+ exp (iK'. rj) 

+ a '  exp ( - iK ' .  rj)]} (2.11) 

according to (2.2). 
The matrix elements of (2.9) can then be calculated 

as follows: 

( FlnintlZ) = [ 2e2wh / m( tootO ')1/2](eo . e') 

x ( f [E  exp [ i (K'-Ko).  rj]l/) 
J 

x m~/Z(m' + 1)1/28 nh, m h ~ no,too_ 1 

+ (eh. eo)(f[ Y. exp [ i (K ' -  Kh). rj]]/) 
J 

1/2 Xmlh/E(m'+ 1) 8n0,moSnh,mh--1}Sn,+l,m,+l 

(2.12) 
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and 

( LII) = ( AZ'°e-Ag/ mo!) ,/2( AZ.,he-a~ i mh !)1/2 

x exp [i(mh + 1/2)AO]3tfim,..,. (2.13) 

Insertion of (2.12) and (2.13) into (2.9) yields 

P( t)  = ( 16w 2 h 2 e4/m2tooto,)(A2.oe-A~o/nod 

x(A2h"he-A~'/nn!)(n ' + 1 ){ (eo. e )[pqo,fa[,2 2 Ao2 

a t - ( e h .  ' 2 2 2 e ) IPq~,S,,[ Ah+ (eo. e')(ehe')AoAh 
x * e ia¢'+ * e-ia¢']} [Pqo,fiPqh,f,i Pqo,f, iPqh,f,i 

xsin  2 [(EF-- E~)(t/2h)]/(EF- E~) 2, 

where 

qo - K' - Ko; q h  = K' - K h ,  q h  = q 0  - -  g h ,  

and 

(2.14) 

pq,f,i =- (f[ ~ exp ( i q .  rj)[i). 
J 

Since the double differential scattering cross section 
arises from P(t) by the following relation 

d2o'/d(hw) dO = [c(Ag+ Ag] -x 

X~ (2"n'C) 3 h-lto '2 dP(t)/dt; 
F 

to=tOo-tO', (2.15) 

one obtains finally the double differential cross sec- 
tion (DDCS) of coherent inelastic scattering: 

d 20"/d(hto) dO = [ e4/m 2 c4(A 2 + A~)](to'/tOo) 
i 2 2 2 

x E {(eo. e ) aolPq0,f,,l 
f 

t 2 2 2 
+ (eh. e ) Ah Pqh,f,i 

+ (eo. e')(eh, e')AoAh 
• eia~ x [Pqo,f, iPqh,fa 

• e-'a*]}6 (E I - E , -  hto), + Pqo,f, iPqh,f,i 

(2.16) 

where Ei and Ef refer to the energy of the initial and 
final states of the electron system, respectively. 

III. Impulse approximation of the coherent inelastic 
scattering cross section 

As in the case of conventional inelastic X-ray scatter- 
ing the expression (2.16) for the DDCS of coherent 
inelastic scattering can be approximated in such a 
way that is contains only ground-state properties, 
provided the transferred energy hto is large compared 
with characteristic energies of the system (impulse 
approximation). As has been shown by Eisenberger 
& Platzman (1970), the essentials of the impulse 
approximation are as follows. (For the sake of clarity 
all the following relations refer to a one-electron 

system. The extension to many-electron systems is 
given at the end of this section.) 

1. The final state of the scattering system is thought 
to be free-electron like with momentum eigenstates 
Ip>. 

2. The time t ( t = t o  -]) of interaction during the 
inelastic scattering process is thought to be small so 
that the potential energy cancels in the difference 
between the final- and initial-state energies of the 
scattering system in the 3 function of (2.16). 

This type of approximation can be expressed in 
terms of quantum mechanics by noticing that, for a 
Hamiltonian H = (2m)- lp2+ V= Ho+ V, 

exp  {½[Ho, V ] t 2 / ~ 2 }  --- 1 (3.1) 

as long as only time intervals t ~  to-1 are involved, 
and hto is large compared with characteristic energies 
of the scattering system. Following this line also for 
coherent inelastic scattering, one ends up with the 
following expression for the double differential scat- 
tering cross section as shown in Appendix A: 

d2tr/dto dO=[r~l(A~+ A~)](to'/too) 

x [ (eo. e')2Ag ~ I( i lp)l 2 
t p 

x 6(to- hq2/2m-p ,  qo/m) 

+(eh.  e,)2A~ g (i p)12 
p 

x 6(w - hq2h/2m --p. qh/m) 

+ ½(eo. e')(eh, e')AoAh 

X ( e~*[ ~ (i p+gh)(pli) 

X 6(to -- hqg/2m - p .  qo/m) 

+ Y~ (iIp)(P- gh [i) 
p 

x 3(to - hq~/2m-p ,  qh/m) I 
I 

+e-'a~[~(i[p--gh)(p[i) 

x 6(w - hq2h/2m --p. qh/m) 

+E (ilp)(p+ghli) 
p 

(3.2) 
where ro =- e2/ mc 2. 

The first two terms in the { } brackets of (3.2) 
contain the information about the diagonal momen- 
tum density of the ground state I(iip)[ 2 as in conven- 
tional Compton profiles, that is the projection of the 
diagonal momentum density on the scattering vectors 
qo and qh, respectively. The third term (interference 
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term) provides the desired information on the projec- 
tion of the nondiagonal momentum density, e.g. {i p + 
gh) (P i), of the ground state on qo and qh, respectively• 

The interference term of (3.2) will further be 
reduced if qo and qh are equivalent with respect to 
the crystal symmetry. In this case the following 
equation holds: 

(i P+gh)(P i)8(to -- h q ~ / 2 m - p  . q0/m) 
p 

= ~( ip)(P--gh i )8( to--hq2h/2m--p .qh/m)  (3.3) 
p 

provided that 

q2 = q2 _ q2. (3.4) 

Obviously, in these cases, the first two terms of (3.2) 
are identical. If, additionally, the expressions on the 
right-hand and left-hand sides of (3•3) are real valued, 
(3.2) reduces to 

d2tr/dto dO = [ r2/( A 2 + A 2 ) ]( to '/too)(87r3) -1 

x {[(Co. e')2Ao 2 + (eh. e')2A 2] 

x j" dp (ilp)128(to- h q 2 / 2 m - p ,  q~ m) 

+2(%. e')(eh, e')AoAh cos A~ 

x j" dp( ilp + gh) 

x (pli)8(to- h q 2 / 2 m - p ,  q/m)}, 
(3.5) 

where the summation with respect to p was replaced 
by an integration. The first integral in the { } brackets 
is the well known Compton profile• The second 
integral, which contains the information about the 
nondiagonal momentum density, should be called the 
'nondiagonal profile'. Finally, the impulse approxi- 
mation has to be extended to a many-particle system 
by introducing /'1(pip'), the one-particle density 
matrix in momentum space (1 DMMS), together with 
the two-particle density matrix F2(pl, P2IP~, P~) in 
momentum space (2 DMMS) according to LSwdin's 
convention (LSwdin, 1956). This is performed in 
Appendix B, where it is shown that, for instance, the 
term 

(3.6) 

of (2.16) can be written as 

½{~ dpFl(p+gh p)8( to-  h q 2 / 2 m - p ,  qo/m) 

+ ~ dp Ft(plp-gh)8( to--hq2h/Em--p.  qh/m)  

+ 2 j" dp~ dp2 F2(P2- qh, pl +qo P2, Pl) 

X 8(to-- h q 2 / 2 m - p ~ ,  qo/m) 

+ 2 j" dpl dp2 F2(p2, P~IP2 +qh, P~--qo) 
X 8(to -- hq2h/2m--p2, qh/m)}. (3.7) 

As already pointed out by Benesch & Smith (1973), 
the third and fourth term of (3.7) can be neglected 
compared to the first and second ones under experi- 
mental conditions, which fit the impulse approxi- 
mation. 

Therefore, (3.2) can be written for many-electron 
systems as follows: 

d 2 tr/dto dO = [ rE/(A 2 + A2h) ](to '/too){ (eo. e')2A 2 

x ~ dp F(p p)8(to - hqE/2m - p .  qo/m) 

+ (eh. e')2A 2 ~ dp r(plp) 
x 8(to - h q E / E m - p ,  qh/m)  

+½(Co. e')(eh, e')AoAh 

x[e  ' ~  (~ dp F(P+ghlp) 

X 8(to -- hq~/2m - p .  qo/m) 

+ ~ dp F(p lp -  gh) 

x 8(to - hq2h/2m --p.  qh/m))  

+ e-'a*(~ dp F(p--ghlp) 
2 3 

× 8(to -- hqh/2m --p.  qh/m)  

+ I dp r(plp + gh) 

x S ( t o -  h q ~ / 2 m - p . q o / m ) ) ] } ,  (3.8) 

where the subscript 1 for the one-particle matrix has 
been dropped. 

Equation (3.8) can further be reduced in the same 
way as in the one-electron case [(3.5)], provided qo 
and qh are crystal-symmetry equivalent: 

d2 o'/ dto dO = [ rE/(A~ + A2h) ]( to '/too) 

x {[(eo. e')2Ao 2 

-}" ( e h  , 2 2 • e ) A h ] , r q ~ q , o ( Q )  

+ 2(Co. e')(eh, e')AoAh cos (A~) 

x flq,gh(Q)}, (3.9) 

where Jq,o(Q) denotes the Compton profile 

~/;q,o(Q) = ~ dp F(plp)8(to- h q E / E m - q Q / m )  
(3.10a) 

and flq,gh(Q) denotes the nondiagonal profile 

~q,gh (Q)---- ~ dp r ( p  + ghlP)8(to - t~q2/2m - qQ/m) .  

(3.10b) 
Q is defined by 

Q = p . q / q = m t o / q - h q / 2 .  (3.11) 

IV. Experimental realization of coherent 
inelastic scattering 

According to (3.8) of the preceding section, one can 
obtain the desired information about the nondiagonal 
elements of the 1 DMMS by measuring the DDCS 



90 NONDIAGONAL MOMENTUM DENSITY OF Si 

for two different initial photon states, characterized 
by (Aol, Col, Ahl, ehl, A~I) and (APE, %2, Ah2, ehZ, 
aq~z). These well defined initial photon states can be 
realized within a sample crystal by means of the 
following experimental setup (Fig. 1) utilizing the 
well known relations of X-ray optics for nearly perfect 
crystals. 

The sample is the second crystal of a nondispersive 
double-crystal setting at the Bragg position, where 
the first crystal has to be cut asymmetrically in order 
to obtain an extremely well collimated beam at the 
second (sample) crystal. The sample crystal is 
enclosed within an evacuated scattering chamber. 
According to the well known relations of the dynami- 
cal theory of X-ray diffraction (Laue, 1960), two 
coherent plane waves, the Bragg-reflected wave 
Ah, eh', Kh, and the 'forward-diffracted' wave 
Ao, Co, Ko with Kh = Ko + gh are excited at the sample 
crystal, so that the amplitude ratio Ah/Ao together 
with the mutual phase shift a~p of the two plane-wave 
components are mainly determined by y, the normal- 
ized deviation from the exact Bragg position via the 
following equations, which hold for the so-called 
Bragg case of diffraction (Bonse, 1964): 

~(v) = ( ah / Ao) e -'a* 
.r(. v) 

- - - ( - 1 )  (~,ox~/l~ x~) ̀ /~ 
x ( d { 1 - [ ( E - 1 ) / ( E + I ) ]  '/2 } 

+i f {1 - [ (E+l ) / (E -1 ) ] ' / 2 } ) ,  (4.1) 

with 

E=d2+f2+[ l+(d2+f2) -2(d2- f2) ]  '/2 (4.2) 

d -(Ix, olq*.v/cI)lh/22Clgh CI) -t- Y; 

f =  X,o v~ cl):h/2 C]-  ~hy/2dPh (4.3) 

~ ~  1 st Si crystat 

X-my, ---~,-:::~o 
source / \ Os 

diffraction ptane \/~---x.... 
2ndsi c r y s ~  

~ j . . ~ 1 3  detector2 
~ ~ diffraction p[one 

detector 1 
(SSD) 

Fig. 1. Experimental nondispersive double-crystal setting. First 
crystal: asymmetrically cut crystal. ~o is the angle between the 
crystal surface and the diffraction plane. Second crystal: the 
crystal surface is inclined by/3 from the diffraction plane so that 
the surface and the diffraction plane intersect along a line parallel 
to Ko+ Kh. !1 is the normal to the crystal surface. The direction 
K' of the scattered wave has to be chosen so that IK'-Ko[ = 
[K'-Kh[ and K'-Ko is equivalent to K' -K h with respect to 
crystal symmetry. Detector 1 (solid-state detector) is the energy 
analyzer for the inelastically scattered beam. By means of detec- 
tor 2 the rocking-curve intensity is measured in order to read 
and to keep constant the relative orientation of the two crystals. 

To---- cos Oo; Yh -- cos Oh (4.4) 

v -  ½[(~o/~. )'/~+( ~./~o) '/~] (4.5) 

~" = 1, i f  C < O, otherwise z = 0 (4.6) 

los 208 if eo and eh are within the plane of 
Ko and K h 

C = (4.7) 
if eo and eh are both perpendicular 
to the plane of Ko and Kh 

/3~-=2(0o-0on) sin20~+ X~o(l+ "Yh/'Yo) (4.8) 

/~,- [X,o[(1 + Ivhl/Vo) (4.9) 
Y=~J(2C(IYh/YO)'/2dP~h/2) (4.10) 

~ h  ~ XrhJ(rh -- Xih)(ih ; ltth ~ XrhJ(i~"~ Xr~)(ih (4.11) 

0on -- 7r/2 - 0s - ¢, (4.12) 

where 0o and Oh are the angles of the forward- 
diffracted and of the Bragg-reflected wave vector, 
respectively, with the crystal surface normal. Xrh and 
X~h are the gth Fourier component of the real and 
imaginary parts of the dielectric susceptibility X = 
X~ + ix~. q~ is the angle between the crystal surface and 
the Bragg diffracting plane. 0s is the Bragg angle. It 
should be kept in mind that y, the normalized devi- 
ation from the exact Bragg position (including the 
effect of refraction), depends on the polarization state 
of the two plane-wave components according to (4.9) 
together with (4.6). This polarization dependence of 
y also makes ~:, as defined in (4.1), polarization depen- 
dent. In order to draw attention to this polarization 
dependence, whenever it is of importance, v indicates 
the components of Aoeo and Aheh normal (v = 1) and 
parallel (u = 2) to the Ko, Kh plane. 

The wave field, composed of the two plane-wave 
components Aoeo, Ko and Aheh, Kh, is damped with 
an extinction coefficient tr in the direction of the 
sample surface normal, which is given by (Wagner, 
1956) 

o'(y) = ( /z /2 ) { ro ' - I~ /h l  - '  ollx,,I)-' Im W}, 

(4.13) 
where 

w -  [~=r- ~ + 4c21 x,.121 ~.1/~o 
+2i(~r~,-2c=~,,13,,,I/~,o)3,/2. (4.14) 

/z is the l inear mass absorption coefficient for X-rays 
of the corresponding wavelength. YII, the normalized 
deviation from the exact Bragg position of the sample 
crystal (second crystal of the double-crystal setup of 
Fig. 1) or, better, the effective range of YII, is defined 
experimentally by ~, the angular position of the first 
crystal relative to the sample crystal, since the 
intensity I(YO, Bragg reflected at the first crystal, is 
limited to a small angular range of y~ according to 

I (YO pc I ~,(y,)l 2. (4.15) 
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Therefore, )7 can be monitored by measuring the 
rocking curve I()7), that is the intensity, which is 
Bragg reflected by the second crystal of the nondisper- 
sive double-crystal setting given by 

2 

I()7) =½10 ~ j" ]~")(Y~")-)7) 2 ~7)(By~,,))2 dye,), 
"=~ (4.16) 

where 

B=(Irhllro)I/V(Irhll -,o,''/2 I I  • (4.17) 

Equation (4.16) refers to an unpolarized incident 
beam of intensity Io. 

By comparing experimental rocking curves I()7), 
which are measured behind the second crystal by 
means of detector 2 (scintillation counter), with calcu- 
lated ones, one can determine )7 experimentally for 
every relative position of the sample crystal. The 
direction K' of the inelastically scattered wave has to 
be fixed in such a way that (3.4) is valid. In order to 
prevent grazing emergence of K', the surface of the 
second crystal is inclined by an angle /3 from the 
Bragg diffraction plane so that the surface and the 
diffraction plane intersect along a line parallel to 
Ko + Kh. 

The radiation scattered by the second crystal at 
position )7 in the direction K' is energy analyzed by 
means of a solid-state detector (detector 1 of Fig. 1). 
Let A(to-o3) be the energy resolution function of 
this detector, then the energy distribution 1(o3, )7) of 
the scattered intensity is given by the following rela- 
tion taking into account (3.9) together with (4.1) 

I(o3, )7)= r~[ ( too -- t~ ) / too]½IoP e ~ dto A(  to - ~ ) 
2 

x Y. {F~")()7, O'))c~./~qo,0(to ) 
v = l  

+ F(2")()7, a3)yq~,o(to) 
+ + 

+ F'30")()7, (f))[,: fqJqh,--gh(to)-I-~qo,gh(to)] , (4.18) 

where Pe is the electron density of the sample crystal. 
The functions F1, F2, F3 take into account both the 
initial photon state, which is determined by )7, and 
the weight of the different polarization states that are 
involved: 

-t-oo + c o  

F~)()7, a3)--(P(o")) 2 J J exp{-[cr(")(By~")) 
0 - - c o  

+~(to0- ~)/cos ~]z} 
x ~")(y~")-)7)2 dye.) dz (4.19) 

,.-k oo -..k oo 

F~2")(g~)_=(p~h"))2 j" j" exp{-[tr0')(By~") ) 
0 - - c o  

+ g(too-  o3)/cos a]z} 

x I~')(By~ ")) 2 dye,,) dz (4.20) 

-t-co -t-co 

-o -h f j 
0 - - c o  

+  (too- a)/cos 

x~[)(By~"))dy~ ") dz, (4.21) 

where tt(too-O3) is the linear absorption coefficient 
of the sample crystal for the scattered radiation of 
energy to'= too-O3, c~ is the angle between n, the 
surface normal of the second crystal, and K' (see Fig. 
1). The polarization factors P(o ~) and P~h "), respec- 
tively, are specified for the case K'. gh = 0, which is 
equivalent to q2__ q2: 

P~ol)- (Co. e')(1) = ( 1 - t a n  2 0Bcos 0c) u2 (4.22) 

P(h I) -- (eh. e') 0)= P(o I) (4.23) 

P(o 2) -- (Co. e') (2) = -cos  0c (4.24) 

P~h 2)~ (eh. e') (2)= P~o 2), (4.25) 

where 0c is the scattering angle defined by 

cos O~= Ko . K'/IKol IK' I. (4.26) 

Assuming qo and qh to be equivalent with respect to 
crystal symmetry, and letting qo = qh - "  q, then we find, 
in the first place, that the two Compton profiles of 
(4.18) are identical. In the second place, the non- 
diagonal profiles within the [ ] brackets of (4.18) are 
identical. 

In this case the nondiagonal profile 

P ( p + g h l P ) 8 ( t o - q 2 / 2 m - p . q / m )  dp+cc  (4.27) 

[convoluted with the energy resolution function 
A(to - o3)] can be obtained from measurements of the 
energy distribution I(o3, )7) of the scattered intensity 
for different values of )7, which means for different 
initial photon states (or different values of F1, F= and 
F3), provided that Io is the same for all relative angular 
positions of the double-crystal setting. If the 'non- 
diagonal profile' is real valued, at least two measure- 
ments will be necessary. The normalization of the 
profiles can be done easily, if one of the measurements 
is at a very large value of )5, so that F2 = F3 = 0. In 
this case the normalization of the measured spectrum 
I(43, )7), after being transformed into a Q scale accord- 
ing to 

Q - p . q / q = t o m / q - q / 2 ,  (4.28) 

is based on the following approximation as utilized 
in most Compton scattering studies: 

Qm 
II r(ala)8(to- h q 2 / 2 m - Q q / m )  dp 

0 

x A( to -  43) dto dQ 
Q,. 

=½no+ j j J F~y(pIp) 6 ( to -  h q 2 / 2 m - Q q / m )  dp 
0 

x A( to -  o3) dto dQ, (4.29) 
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where Qm has to be chosen large enough so that the 
range -Qm < Q < Qm covers the whole valence-elec- 
tron Compton profile; n,, is the number of valence 
electrons per atom. Fcs, the core-electron part of the 
density matrix, is calculated by using a superposition 
of free-atom wave functions. Fcs is assumed to be 
normalized to no the number of core electrons per 
atom, according to 

j" Fci(p[ p) dp= n~. (4.30) 

Let f(gh) be the well known X-ray form factor, then 
the following sum rule (Benesch, Singh & Smith, 
1971) 

J/ '(pip + gh) dp = f(gh) (4.31) 
provides additionally a good consistency test on the 
experimental nondiagonal profiles Jq,gh(Q) if 
appropriate experimental values of f(gh) are 
available. 

V. Experimental details and results 

The nondiagonal profiles of Si valence electrons that 
contain the desired information about the non- 
diagonal momentum density were obtained for two 
different reciprocal-lattice vectors, gh = (2zr/a)(220) 
and gh(27r/a)(111), by measuring the DDCS's and 
by using the evaluation procedure as described in 
§ IV. 

11 g22o experiment 

In the case of the g22o experiment, the first crystal 
of the double-crystal setting (Fig. 1) was a symmetri- 
cally cut (220) crystal. The surface of the second 
crystal was inclined by an angle /3 = 15 ° from the 
(220) plane. The scattering angle 0c between Ko and 
K' on one side and Kh and K' on the other side was 
128(2) ° . The tolerance +2 ° is due to both the size of 
the irradiated area at the second crystal and the 
effective area of the Si(Li) detector crystal (detector 
1 of Fig. 1). The orientation of K' relative to the 
sample crystal was chosen in a manner so that, in the 
first place, the scattering vectors qo and qh had equal 
length, in order to fulfill the demand of (3.4). In the 
second place, the orientation of K' guaranteed that 
the direction of qo and qh coincided with the direction 
of ~9~7 and g7~7, respectively, in order to make them 
equivalent with respect to the crystal symmetry. 
Therefore, the reduced equation (3.5) can be used 
for evaluating the measurements. K,~,. 2 X-radiation of 
an Mo tube was employed. The total energy resolution 
A(to-o3) of the experiment, as due to the MoK 
doublet and the Si(Li) detector resolution, was 
measured by energy analyzing the Bragg-reflected 
intensity using the Si(Li) detector at the position of 
detector 2 in Fig. 1. The double differential scattering 
cross section was measured for the following eight 
angular positions 37 of the second crystal relative to 

the first one (given in units of y~ ) :  -88.4,  -8.84,  
-1.58, -0.82,  0.82, 1.58, 2.18, 8.84. The relative 
angular position 37 of the sample crystal is read and 
kept constant to 0.2" by computer feedback through 
the rocking-curve intensity measured by detector 2. 

The spectrum of the scattered radiation contained 
---3.5 x 105 counts in every case after a linear back- 
ground subtraction. The (quasi)-elastically scattered 
part of the spectrum was fitted at its high-energy side 
on the total energy resolution function and then sub- 
tracted from the spectrum in order to isolate the 
inelastic part. 

Then the energy scale was converted into a Q scale 
according to (4.38). Only the scattered spectrum 
between Q = 0 and Q = 2.5 a.u. (high-energy side) 

as used to extract the valence-electron nondiagonal 
profile according to the procedure described in § IV, 
since the low-energy part of the spectrum is contami- 
nated by the inset of the l s 2 part of the profiles as 
due to the binding energy of the Si K electrons. The 
spectra were normalized in the manner as described 

Si 
(h)3.0 ~ -.2~19 9n~ 

(g) 3.0 

(f)3.0 

T (e) 3.0 0.0 (h) 
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(b) 3.0 0.0 (e) 

(a) 3.0 0.0 (d) 
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Fig. 2. Normalized high-energy part of the Si 220 spectra after 
subtraction of both a linear background and the (quasi) elasti- 
cally scattered line for eight different values of 37, the relative 
angular position of the second crystal with respect to the first. 
The curves refer to the following values of )7 in units of y~): 
(a) -88.4; (b) -8.84; (c) -1.58; (d) -0.82; (e) +0.82; (f) 
+1.58; (g) +2-18; (h) +8.84. The statistical error of each 
measured point is represented by the length of the streak. The 
curves were smoothed with an appropriate digital filter. The 
energy scale of the measurement was converted into a Q scale. 
Different contributions of nondiagonal profiles to the spectra 
for different 37 are evident. 
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in § IV [(4.29)] by utilizing the measurement with 
y = -88 .4 .  The Compton profile of the 2s22p 6 core 
electrons on the right-hand side of (4.29) was calcu- 
lated by using Clementi (1965) wave functions. This 
profile was convoluted with a Gaussian of 1.72 a.u. 
full width at half maximum (FWHM) on the Q scale, 
which is composed of the total energy resolution of 
the experiment (after being converted into a Q scale) 
and the influence of a Gaussian-distributed scattering 
angle 0~. 

The normalized high-energy part of the spectra for 
eight values of 37 are displayed in Fig. 2. The different 
shape of the spectra, as can be read, for instance, 
from different intensity at Q = 0, is due to different 
contributions of the nondiagonal profiles. 

By using in each case a pair of measured spectra 
belonging to two different values of 37, the spectra 
could be separated into their Compton profile and 
their nondiagonal profile contribution according to 
(4.18). In order to do this, the factors F~ ~), F(2 "), F(3 ") 
were calculated according to (4.19)-(4.21) assuming 
unpolarized radiation hitting the first crystal and 
using both the well known relation between Xrh and 
the structure factor Fh and the correspondence 
between Xio and/z,  the linear absorption coet~cient. 
Xi(22o) is assumed to be 0.96XX~o (Hildebrandt, 
Stephenson & Wagenfeld, 1973). 

Finally, the core contribution to the 220 non- 
diagonal profiles was calculated by using Clementi 
wave functions together with the relations as derived 
in Appendix C. These core contributions were sub- 
tracted from the total 220 nondiagonal profiles, thus 
obtaining the interesting valence-electron (220) non- 
diagonal profiles. A weighted average of all valence- 
electron 220 nondiagonal profiles, as obtained by 
evaluating the measured spectra in pairs, is shown in 
Fig. 3, together with the corresponding valence-elec- 
tron Compton profile. This Compton profile is also 
the result of an evaluation of the measured spectra 
in pairs, where, in each case, the core contribution 
was also subtracted from the total Compton profile. 
Together with the experimental profiles in Fig. 3, their 
theoretical free-atom 3s23p 2 and 3s13p 3 counterparts 
are also displayed, which were obtained from 
Clementi wave functions and convoluted with a 
Gaussian of FWHM = 1.72 a.u. According to (1) the 
integration of the experimental 220 nondiagonal 
profiles over the whole Q scale should yield thef(gE2o) 
X-ray form factor of Si valence electrons. If the small 
asymmetry with respect to Q = 0 is neglected, which 
is always present in a nondiagonal profile due to 

F ( p + g h l p )  = rO+ghl#), ( 5 . 1 )  

where 

p -  --(P+gh), (5.2) 

integration of the 220 nondiagonal profile over Q 
from 0 to +Qm [see (4.29)] should yield ½f(g22o). 

The corresponding integral of the experimental 
valence-electron 220 nondiagonal profile over Q from 
Q = 0 to Q = 2.5 a.u. is 0.00(2). The best experimental 
value of ½f(g22o) for valence electrons is -0.02 
obtained by subtracting fsi4+(g220)= 8-694 (see Inter- 
national Tables for X-ray Crystallography, 1968) from 
the measured value of the total form factor fsi(g22o) = 
8.651 (Aldred & Hart, 1973). This agreement between 
the integrated nondiagonal profile with the corre- 
sponding experimental~-ray form factor can be con- 
sidered as a successful test on the reliability of the 
measured nondiagonal profiles. 

2. gill experiment 

In the case of the g111 experiment, the first crystal 
of the double-crystal setting (Fig. 2) was an asym- 
metrically cut crystal with an angle ~p = 5 ° between 
the surface and the (111) plane. The scattering angle 
0c was 130(2) °. The orientation of K' again was chosen 
to make possible both equal length of the scattering 
vectors qo and qh and equivalence of qo and qh with 
respect to the crystal symmetry, where their directions 
were those of gE0,T~,l and g~8,~,i, respectively. Again, 
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Fig. 3. Upper curves: Experimental Si valence-electron Compton 
profile ~q,o(Q) [q11(977)], together with a free-atom 3s23p 2 
Compton profile (solid line) and a free-atom 3sl3p 3 Compton 
profile (dashed line) both convoluted with a Gaussian of 
FWHM = 1.72 a.u. (total momentum-space resolution of the 
experiment). The length of the streaks in the experimental curve 
represents statistical error. Lower curves: Experimental Si 
valence-electron 220 nondiagonal profile ,:r~q,g220(Q) [q11(977)], 
together with a free-atom 3s23p 2 220 nondiagonal profile (dotted 
line) and a free-atom 3s13p 3 220 nondiagonal profile (dashed- 
dotted line), both convoluted with a Gaussian of FWHM = 
1-72 a.u. 



94 N O N D I A G O N A L  M O M E N T U M  DENSITY OF Si 

K radiation of Mo tube was (see.2 an used. The angle fl 
Fig. 1) between the (111) plane and the surface 

of the second (sample) crystal was 4-5 ° . The total 
energy resolution A(to-o3)  was the same as in the 
g220 experiment. Three spectra were measured at the 
following angular positions )7 of the second crystal 
in units of y~]): -64.8,  -1 .31,  +1.31. The spectrum 
of the scattered radiation contained --7.5 x 105 counts 
in every case after background subtraction. 
Normalization and conversion of the energy scale 
into the Q scale was done as in the g22o case. In Fig. 
4 the normalized high-energy parts of the spectra for 
three )7 values are shown. Again the different contribu- 
tions of the nondiagonal profiles to the total spectra 
are evident. 

The extraction of the valence-electron 111 non- 
diagonal profiles was performed in the same manner 
as in the g22o case. In Fig. 5 the experimental valence- 
electron 111 nondiagonal profile is shown together 
with the experimental valence-electron Compton 
profile. The theoretical free-atom counterparts of the 
experimental profiles are also displayed (again con- 
voluted with a Gaussian of FWHM = 1.72 a.u.). 

The integral of the experimental valence-electron 
111 nondiagonal profile over Q from Q - - 0  to Q = 
2.5 a.u. is 0.65(2). The corresponding experimental 
value of half the X-ray form factor, ½f(gl]~), is 0.632 
(Aldred & Hart, 1973), so that in the gl~] case the 
measured nondiagonal profile also seems to be quite 
reliable. 
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Fig. 4. Normalized h~gh-energy part of the Si 111 spectra after 
subtraction of both the background and the (quasi) elastically 
scattered line for the following three values of fi (in units of 
y~)): (a) -64-8; (b) -1.31; (c) +1.31. Representation of statis- 
tical error as in Fig. 2. Different contributions of nondiagonal 
profiles to the spectra for different )7 are evident. 

VI. Discussion 

One should bear in mind that the experimental results 
presented here are only of a very preliminary nature. 
The poor energy resolution and the low statistical 
accuracy together with the limitation to only one 
projection prevent detailed experimental information 
about the three-dimensional nondiagonal momentum 
density. Nevertheless, some general features of the 
solid-state Si nondiagonal momentum density can be 
deduced. 

The much higher sensitivity of the nondiagonal 
density to solid-state effects is demonstrated very 
clearly by the 111 results: The difference between the 
free-atom Compton profile and the experimental one 
is less than 3% at Q=O, when the 3s13p 3 atomic 
configuration is taken into account. On the contrary, 
this difference is more than 20% in the case of the 
nondiagonal profiles; moreover, this difference has 
the opposite sign. This reflects the special phase 
relationship between X(P) and X*(p+gh),  the 
momentum-space wavefunctions at p and P+gh, in 
the case of a solid when compared with free-atom 
states. In particular, it is the role of the higher momen- 
tum expansion coefficients of the real-space wave 
function brought about by the lattice periodicity of 
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Fig. 5. Upper curves: Experimental Si valence-electron Compton 
profile Jq.o(Q) [q[[(20,]8,1)], together with a free-atom 3s23p 2 
Compton profile (solid line) and a free-atom 3s~3p 3 Compton 
profile (dashed line) both convoluted with a Gaussian of 
FWHM--1.72 a.u. (total momentum-space resolution). Statis- 
tical error is given by the length of the streaks representing 
measuring points. Lower curves: Experimental Si valence-elec- 
tron 111 non-diagonal profile o~q,g,,,(Q) [q11(20,]8,1)], together 
with a free-atom 3s23p 2 111 nondiagonal profile (dotted line), 
and a free-atom 3s~3p 3 111 nondiagonai profile (dashed-dotted 
line) both convoluted with a Gaussian of FWHM = 1.72 a.u. 
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the ion potential (Berko & Plaskett, 1958) that makes 
the nondiagonal momentum-space density much 
more sensitive to solid-state effects than the diagonal 
density. This can be made evident for a simple solid 
with only one occupied band in the ground state: 

Let the real-space wave function 0k(r) (k= 
Bloch-wave vector) of this model solid be expanded 
into plane waves according to 

tPk(r) = ~ a(k+gh)  exp[i(k+gh)r] .  (6.1) 
gh 

Then the expansion coefficient a(k+gh) with gh ~ 0 
may be called the higher momentum coefficient, since 
l a (k + gh)[ 2 is the probability for measuring a momen- 
tum p = h (k + gh), a so-called higher momentum com- 
ponent of the momentum probability distribution. 
The coefficient a (k+  0) is called the fundamental. 

The nondiagonal density corresponding to any gh 
couples the ghth higher momentum coefficient with 
the fundamental. Therefore, the contribution of 
higher momentum coefficients to the nondiagonal 
momentum density is augmented by the magnitude 
of the fundamental coefficient, whereas the higher 
momentum coefficients contribute to the diagonal 
momentum density only via its squared modulus. 

This emphasis of higher momentum coefficients is 
also visible in the 220 results: Since, in the case of 
Si, all occupied states are restricted to the so-called 
Jones zone (Jones, 1975), the 220 nondiagonal den- 
sity exclusively couples fundamentals with higher 
momentum coefficients also in the case of a solid with 
four occupied bands. Therefore, one can easily under- 
stand why, compared to the free-atom case, the 220 
nondiagonal profile is smaller and, at least for certain 
Q ranges, opposite in sign, reflecting the opposite 
sign of the higher momentum coefficients compared 
with their corresponding fundamentals in most cases. 

In order to improve the experimental information 
about the nondiagonal momentum density by means 
of coherent Compton scattering, one has to follow 
two lines: First of all the momentum-space resolution 
has to be improved by replacing the energy-dispersive 
analysis by a crystal-dispersive one (Sch/ilke & 
Nagasawa, 1984). Additionally, a higher statistical 
accuracy has to be achieved. Both can be done by 
utilizing the potentiality of a powerful synchrotron 
source. In this case, X-ray band-pass filters (Schiilke, 
Mourikis & Liedtke, 1984) could also be employed. 
In the second place, nondiagonal profiles with .many 
different directions of the scattering vectors have to 
be measured, in order to render the application of 
one of the well known reconstruction methods that 
yield the three-dimensional nondiagonal momentum 
density. 

Helpful discussions with U. Bonse are kindly 
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APPENDIX A 

As an example for the formalism of the impulse 
approximation as applied to the double differential 
cross section of coherent inelastic scattering, the 
approximated expression of the following cross term 
in the [ ] brackets of (2.16) should be derived: 

p q~o,f, iP qh, f, ic~ ( E f  - -  E i - ~1(.o ) 

=---E (i e-'qo"lf)( f e iqh" i ) 8 ( E y - E i - h t o ) ,  (A.1) 
f 

where ]i) and If) stand for the initial and final states 
of the scattering system, respectively. For the sake of 
simplicity, this sytem is thought of as a one-electron 
system by skipping the j summation in (2.14), (2.16). 
The extension to many-particle systems is given in 
Appendix B. The following derivation follows very 
closely the formalism as applied by Eisenberger & 
Platzman (1970) to the conventional inelastic scat- 
tering. 

By using the integral representation of the 8 func- 
tion, one obtains for (A.1) {++ 
½ • I dte-~°t( i e-'q°'rf)(fle'Eet/~ eiqh'" e-iE't/"[i) 

f - - c o  

+ +  } 
+ I e+°" (il eiE//h e-'q°" e-'Ef'/" f)(fleiqh"] i) • 

--00 

(A.2) 

This representation was chosen in order to keep the 
cross term of (2.16) real valued throughout the follow- 
ing approximation procedure. 

n = ( 2 m ) - l p 2 +  V - H o +  V (A.3) 

is the Hamiltonian of the scattering system, (A.2) will 
read as follows: {++ 

I dt  e-iO't(ile -i%" e iHt/~' e 'qh'" e-'Ht/t'li > 
--00 

+ J+°° dt ei't(ile in,/~ e -iq°'" e -+n'/~ eiqh'rli)~ (A.4) 
- -OO J 

where additionally the completeness relation 

If) (fl = 1 (A.5) 
f 

was used. 
If e im/h is expanded in the following manner 

e+nt/~, = e~not/~ eiVt/~ e-gno, vlt2/~. . . , (A.6) 

the essential of the impulse approximation consists 
of the assumption that 

exp (-½[Ho, V]t2/h2) "v 1, (A.7) 

which is justified when 

hto >> ([H0, V]) 1/2, (A.8) 

since appreciable contributions to the integrals in 
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(A.4) occur only for t ~  < 1/to. The relation (A.8) will 
be valid if the transferred energy hto is large compared 
with characteristic energies of the system. 

Equation (A.7) together with [ V~r] = 0 results in 

½ I dt e -i~°t (i[ e -iq°'r e 'Ho'/" e ~q.'r e -iH°'/n i) 
--00 

} + I dt eiO't(il e m°'/~' e -iq°'r e -iH°t/h e 'q'''r i) (A.9) 
--OO 

for (A.4). 
Finally, the insertion of a complete system of eigen- 

functions Ip> of no, together with 

e'no'/~lp)=e%'/~lp), 
where 

% -  p2/2m, (A.10) 

transforms (A.9) into 

½{ ~ (i p--qO}(P--qh i}8(%--ep--qh-- hto) 

E ( i p - qo) (P - qh i) 8 ( ep - Ep_qo - h t o  ) ~, (A. 11 ) + 
P ) 

where the integral representation of the 8 function 
was revoked. 

By means of the substitutions p - qh = Po in the first 
and p - q o =  po in the second terms of (A.11), and by 
taking into account that qo = q h + g h ,  according to 
(2.14), one ends up with 

½I ~ (i P0--gh}(P0 i}tS(to- hq2h/2m--po, qh/m 
I. Po 

(i Po} (Po + ghl i)8(to - hq2/2m - Po. qo/m ) + 
Po J 

(A.12) 
instead of (A.11). 

In the same manner the impulse approximation of 
(2.16) can be achieved so that (3.2) is obtained. 

A P P E N D I X  B 

The impulse approximation of (2.16) is now extended 
to many-particle systems. Again, only the impulse 
approximation of one cross term in the [ ] brackets 
of (2.16) should be derived explicitly, namely 

( f l ~ e ' % r J l f ) ( i l ~ e - ' q ~ " J [ f ) t 3 ( E f - E i = h t o ) .  
(B.1) 

With the same argument as used in Appendix A, (B. 1 ) 
can be represented by 

½ I d t e - i ' ° ' ~  (i e-iq~~ e iHo~/~' e ~qor~ e -iHo'/~ i) 
-oo jk 

} + I d t  ei~°t~, (i emo,/~ e-iqh'r~ e-too '/~ e iqo-rk i) , 
-oo jk 

(B.2) 

with 

hto >> ([ no, V])'/2. ( B.3 ) 

Further detailed derivation will refer only to the first 
term of (B.2). 

In order to introduce the (spin-free) one- and two- 
particle density matrices according to L/Swdin's 
(1956) convention, the first term of (8.2) has to be 
separated into one- and two-particle contributions: 
q-co 

dte- i '° t{N(i  e-iqh.r, emot/~ eiqo.,, e-not/h]i ) 

+ 2(~)( i l  e -'q"r' e 'n°'/~ e 'q°r2 e-'~°'/hli)}. (8 .4)  

By writing (B.4) in terms of the one-particle density 
matrix F,(rlr' ) and the two-particle density matrix 
F2(rlr2 r'~r~), respectively, one obtains 

+co 

d t e - ~ ' { N ~ e  -iqh'r' 
--00 

× e iH°t/h e/q°'q e - m o t / ~ F a ( r l [ r ~ )  d r ,  

x 2 ( 7 )  ~ e -'q~r, e'"o'/~ e'qor2 

x e-iHo'/nF2(rlr21r'~r'2) drl dr2}. (8.5) 

As in the case of the approximation procedure, 
described in Appendix A, one inserts into (8.5) a 
complete system of eigenfunctions [p) of Ho so that 
one obtains 

+oo 

de {e-i(h~-%+%-~o )'/h E ~ ei(P-%)'rl 
--oo p 

x e-"P-qo)";Fl(rllr;) dr1 dr~ 

+ e- - i (h t° -ep l -eP2+ePl+ep2-qo  ) t / h  

)< ~ e i [ (p t -qh) ' r l+p2"r2]  e - i [ p r r ~ + ( p 2 - q o ) - r ~ ]  

ptp2 

x F2(rlr2[r~r~) dr, dr2 dr~ dry}. (B.6) 

Following Benesch, Singh & Smith (1971), the n- 
particle density matrix in momentum space 
F , , (p~ . . . p~ lp~ . . . p ' )  is defined as the 6n- 
dimensional Fourier transform of the (spin-free) n- 
particle density matrix in position space so that (B.6) 
can be written as 

r,(po+ ghiPo)8(to - hq~/2m -Po .  qo/m) dpo 

+ ~ F2(Po2-qh, Pol + qo[Po2, Po,) 

X 8(to -- hq2o/2m - Pol. qo/m), (B.7) 

where the following substutions have been per- 
formed: 

P - qo = Po 

P2 - qo = Pol (B.8) 

P, = Po2. 

Additionally, the integral representation of the 8 
function in (B.6) was revoked. 
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Using the same formalism also for the second term 
of (B.2), one ends up with the following impulse 
approximation of (B. 1 ): 

½{ I Fl(po+gh p0)8(~o -- h q g / 2 m - p o ,  qo/m) dpo 

+ I F2(Po2-qh, Pol + qolPo2, Po~) 

X 8(~o- h q ~ / 2 m - P o l ,  qo/m) dpm dpo2 

+ I F~(polpo- gh) 8(o~ -- ~q2h/2m --P0-qh/m) dpo 

+.[ Fz(Po2, PollPo2 +qh, Pro- qo) 

× 8(o9- hqZh/2m-Po2, qh/m)  dpol dpo2}. (B.9) 

APPENDIX C 

Within the limits of the one-electron approximation, 
Fcy(PlP+gh), the ghth nondiagonal element of the 
core-electron part of the one-particle density matrix 
in momentum space, will be calculated for a crystal 
composed of free-atom cores at the positions R + ds, 
where R is a Bravais-lattice vector and d, a vector of 
the basis. The Bloch function of one core state may 
be represented in terms of the tight binding approxi- 
mation by 

ff/~,t/= V-1/2~ eik'(r+ds)cpt/(r--R--ds), (C.1) 
r 

where ~t/is the ~,th-core state of an isolated atom. 
Therefore, 

F(PlP+gh) ---- V -1Y~ Y. Y~ j" Y. e -'k'<r+ds) e '(p+g")'~ 
t / k s  R 

x q~*(r -R-d~)  dr 

× I ~ e/k'(R+d~) e- ip ' r  

R 

x q~t/(r-R-d~) dr. (C.2) 

Fig. 6. Angular variables of p and P~-P+gh as defined in order 
to calculate the orientation average of the nondiagonal momen- 
tum density using free-atom wave functions. 

The substitution u = r - R - d s  in (C.2) results in 

F(p P+gh) = V -I 2 Y. Y. { Y. e-i(k-P-gh)'R e-i(k-p-gh)'ds 
t / k s  R 

x I ~*(u) e '(p+~h)'n du 
X ~ e i ( k - p ) ' R  e i(k-p) 'ds 

R 

x I ~ot/(u) e -ip'n du} 

= 2  2 ~ { 2 8 ( - - k + p + g h - - g )  e -i(k-p-gh)'d" 
t / k s  g 

X I ~O*(U) e i(p+gh)'n de 
× ~  8 ( k - p - g )  e i(k-p)'d~ 

g 

x I ~o.(u) e -'p'u du}. (C.3) 

Since for a given p + gh there exists only one g so that 
P+ gh--g is a vector within the first Brillouin zone, 
one ends up with 

r ( p  p + g h ) =  Y. 2 e'g"d" I q~*(U) e '(p+g")'a 
s 

x I ~o.(u) e - i p ' '  de 

= Z 2 ei"~d'x~(p + g~lx~*(p), (c.4) 
t/ $ 

where X,(P) denotes the momentum-space wave func- 
tion corresponding to the core state ~0t/(r). 

Assuming the atomic cores to be completely free, 
one has to calculate the orientation average Ft/gh(p, 0) 
of Xt/(P q- gh)x*(P), which can be written explicitly as 
follows 

2~" ¢r 

Fvgh(P, 0)=  (47r) -I I I X*(P, (9, ~ )  
0 0 

xxt/[p(o), 0(o, o, q,), ,i,(o, o, ~)] 
x sin O dq~ d@, (C.5) 

where 

COS O=---p.gh/Pgh and P--=P+gh. (C.6) 

O and q~ are the angular variables of p. 0 and • are 
the angular variables of ~ with respect to the same 
axis as O and 4~ (see Fig. 6). 

As indicated by (C.5), the orientation average of 
the ghth nondiagonal matrix element of the momen- 
tum-space density exhibits cylindrical symmetry with 
respect to gh. 
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Abstract 

Two sufficient criteria on homometric polytypes are 
derived. They are applied to CdI2. In addition to the 
known pairs of homometric structures, infinite sets 
of other pairs may be constructed. Examples of poss- 
ible pairs of homometric CdI2 polytypes for all space 
groups in CdI2 are given. 

Introduction 

Homometrics are two or more structures that are 
neither congruent nor enantiomorphous, but would 
give identical diffraction patterns. Examples of 
homometric structures are to be expected particularly 
among polytypes. Sufficient conditions have been for- 
mulated for M X  and MX2 structures (Dornberger- 
Schiff & Farkas-Jahnke, 1970; Jain & Trigunayat, 
1977; Ohsumi & Nowacki, 1981). 

Jain d¢ Trigunayat (1977) have formulated two 
criteria for MX2-type structures, a proof of which 
has been given by Chadha (1981). Firstly, a Zhdanov 
symbol consisting of only even digits and its literally 
reversed sequence would be either congruent or else 
homometric. For CdI2 and PbI2 no actual example 
of this kind may exist because of the restrictions in 
the arrangement of molecular sheets in these com- 
pounds (Wahab & Trigunayat, 1980). Secondly, if a 
Zhdanov symbol of a structure consists of only 2's 
and pairs of l 's,  then this structure and its literally 

0108-7673/86/020098-04501.50 

reversed sequence are either congruent or else 
homometric. Ohsumi & Nowacki (1981) have given 
a criterion that permits homometric CdI2 polytypes 
to be derived from homometric cyclotomic sets (Pat- 
terson, 1944; Buerger, 1976). In the present paper, 
both the criteria valid for CdI2 are generalized. 

Possible CdI2 structures, homometric according to 
one of the known criteria, have space group P 3 m l  
or P63mc. It will be shown that there may also exist 
pairs of homometric structures with space group 
P ] m l ,  R 3 m  and R3m,  respectively. A pair of 
homometric CdI2 polytypes with different space 
groups is constructed. 

Two theorems on homometrics among polytypes 

Theorem 1. Let PI be a polytype satisfying the 
following conditions: 

(i) PI is composed of two kinds of parallel layers 
.S and T; 

(ii) the origins of S and T may be chosen such 
that there is a straight line through the origins of all 
the layers of P~. 
Let P .  be the polytype whose structure is described 
by the reverse stacking sequence of layers S and T 
in PI. Then the structures of /'i and P ,  are either 
congruent or enantiomorphic or homometric. 

The proof of this theorem is based on formula (1) 
derived by Marumo & Saito (1972) for layered struc- 
tures satisfying conditions (i) and (ii). 
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